Sunday, 4 October 2009

overcoming expressive limitations_ { X, -O} beyond explosions

"It should be emphasized that paraconsistent logics are propositionally weaker than classical logic; that is, they deem fewer propositional inferences valid. The point is that a paraconsistent logic can never be a propositional extension of classical logic, that is, propositionally validate everything that classical logic does. In that sense, then, paraconsistent logic is more conservative or cautious than classical logic. It is due to such conservativeness that paraconsistent languages can be more expressive than their classical counterparts including the hierarchy of metalanguages due to Tarski et al. According to Feferman [1984]: “…natural language abounds with directly or indirectly self-referential yet apparently harmless expressions—all of which are excluded from the Tarskian framework.” This expressive limitation can be overcome in paraconsistent logic.

The primary motivation for paraconsistent logic is the conviction that it ought to be possible to reason with inconsistent information in a controlled and discriminating way. The principle of explosion precludes this, and so must be abandoned. In non-paraconsistent logics, there is only one inconsistent theory: the trivial theory that has every sentence as a theorem. Paraconsistent logic makes it possible to distinguish between inconsistent theories and to reason with them. Sometimes it is possible to revise a theory to make it consistent. In other cases (e.g., large software systems) it is currently impossible to attain consistency." [wiki]

1 comment:

xtina said...

ένας γιάννης θα βρεθεί να ασχοληθεί και μ'αυτό σίγουρα